The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification
نویسندگان
چکیده
Mapping and monitoring forest extent is a common requirement of regional forest inventories and public land natural resource management, including in Australia. The state of Victoria, Australia, has approximately 7.2 million hectares of mostly forested public land, comprising ecosystems that present a diverse range of forest structures, composition and condition. In this paper, we evaluate the performance of the Random Forest (RF) classifier, an ensemble learning algorithm that has recently shown promise using multi-spectral satellite sensor imagery for large area feature classification. The RF algorithm was applied using selected Landsat Thematic Mapper (TM) imagery metrics and auxiliary terrain and climatic variables, while the reference data was manually extracted from systematically distributed plots of sample aerial photography and used for training (75%) and accuracy (25%) assessment. The RF algorithm yielded an overall accuracy of 96% and a Kappa statistic of 0.91 (confidence interval (CI) 0.909–0.919) for the forest/non-forest classification model, given a Kappa maximised binary threshold value of 0.5. The area under the receiver operating characteristic plot produced a score of 0.91, also indicating high model performance. The framework described in this study contributes to the operational deployment of a robust, but affordable, program, able to collate and process OPEN ACCESS Remote Sens. 2013, 5 2839 large volumes of multi-sourced data using open-source software for the production of consistent and accurate forest cover maps across the full spectrum of Victorian sclerophyll forest types.
منابع مشابه
Forest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data
Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...
متن کاملEstimation of Density using Plotless Density Estimator Criteria in Arasbaran Forest
Sampling methods have a theoretical basis and should be operational in different forests; therefore selecting an appropriate sampling method is effective for accurate estimation of forest characteristics. The purpose of this study was to estimate the stand density (number per hectare) in Arasbaran forest using a variety of the plotless density estimators of the nearest neighbors sampling me...
متن کاملخوشهبندی دادههای بیانژنی توسط عدم تشابه جنگل تصادفی
Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...
متن کاملMulti-Temporal Assessment of Mangrove Forests Change in the Coastal Areas of Bushehr Region Based on Landsat Satellite Imagery
Continual access to precise information about the land use/land cover (LULC) changes of the Earth’s surface is extremely important for any sustainable development program in which LULC serves as one of the major input criteria. In this study, a supervised classification was applied to three Landsat images collected in 1986, 1998and 2018, providing mangrove forests change data in the coastal are...
متن کاملThe Performance of small samples in quantifying structure central Zagros forests utilizing the indexes based on the nearest neighbors
Abstract Todaychr('39')s forest structure issue has converted to one of the main ecological debates in forest science. Determination of forest structure characteristics is necessary to investigate stands changing process, for silviculture interventions and revival operations planning. In order to investigate structure of the part of Ghale-Gol forests in Khorramabad, a set of indices such as Cla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013